Recently, there has been much speculation surrounding the colonisation of other planets. From SpaceX to NASA, there have been an array of meetings, plans and discussions surrounding the future of Mars, and whether it should one day be colonised. One argument for the colonisation of Mars is presented by futurist Michio Kaku, who points out that 99.9% of life forms on Earth have gone extinct. On this planet, he claims, we either adapt or die. With the multitude of problems facing our planet, and a growing private sector in space exploration, the frequent discussion of Mars is understandable. Issues such as global warming, antibiotic resistance, and nuclear disaster threaten the planet, as do the countless asteroids that may hit Earth at any given moment. In the case of our planet’s destruction, many argue that a ‘backup planet’ is a viable solution. Such an argument was also supported by the late Stephen Hawking, who conjectured that we needed to colonise the planet in the next 100 years to avoid extinction. Although such a topic undoubtedly stirs excitement among the population, the reality is that the colonisation of Mars is highly impractical. Ideas such as home-building robots, genetically modified plants that can survive on Mars and other necessary technologies are, in many respects, a huge challenge to attain. Whilst easy to succumb to the fantasy of life on Mars, one must not forget the many dangers associated with space travel. Life on a planet with little gravity, high doses of radiation, and micrometeorites is hardly appealing. Of course, with sufficient research and investment, these issues could be tackled. But why should the government and the taxpayer invest such large sums of money in another planet, as opposed to their own? Even in the event of large- scale disasters such as global warming, or an atomic bomb, the Earth would be far more habitable than Mars. Many have concerns over polluted water, and yet the only water on Mars is in the frozen ice caps. Many have concerns over the volume of carbon dioxide in the atmosphere, and yet the atmosphere of Mars is 96% carbon dioxide. It is certainly hard to envision a scenario in which Mars is more habitable than Earth. Then why spend so much money, time and resources fixing these problems, instead of focusing on rebuilding our own planet? The issue of asteroids still remains. Many theorize that the potential for asteroids to destroy Earth is a valid reason to seek shelter elsewhere, and colonise another planet as potential backup. However, if an asteroid was on course to Earth, surely instead of relocating the population, it would be far simpler to build asteroid deflecting technology? In the unlikely case that no area on Earth was safe, one could invest in constructing deep sea colonies in bio domes. Although this sounds challenging, it is still more feasible than relocating a population to a planet nine months away. To summarise, although the idea of travelling to Mars is both exciting and tempting, one needs to look at the practical implications of this. Spending billions on robots, housing, GMO food and all the necessary technology to achieve such a feat is far less reasonable than focusing on renewable technologies, and our own planet. In times of great uncertainty, we should not be focusing on the colonisation of space, but rather the current state of Earth, and tackling our climate crisis. By Tatiana, 11L
0 Comments
The technology involved in genetic editing has made huge breakthroughs in the past few years. What began as an unrealistically difficult and ambitious endeavour in the increasingly complex world of medicine has now manifested into a reality through technology such as CRISPR. Genetic editing holds the power to not only treat but prevent countless diseases, transforming the world of medicine and possibly even diverging the path of human evolution itself. The debate as to whether genetic editing is justified has been fiercely battled for years. The first genetically edited babies were born in China in November 2018. The scientist responsible for this, He Jiankui, was found guilty of “illegal medical practices”. He served three years in prison and was fined a huge 3 million yuan (£327,360). The Chinese court even insisted Jiankui “crossed the bottom line of ethics in scientific research and medical ethics.” Large numbers of people agree with this claim, arguing genetic editing can never be justified. The main reasons supporting this argument include how genetic editing involves humans ‘playing God’. Religious believers often insist that only God should have the right to edit such a crucial element of our individuality, and humans should be happy with their genetic identity as it is ‘God’s gift’, even if this genetic identity involves a disease. The misuse of genetic editing has been a cause of much concern. Its potential use to enhance characteristics such as physical strength, looks, or even intelligence would be unfair to ‘unedited humans’ and possibly biased to the wealthy- the poor will likely be unable to afford genetic editing. A ‘black market’ related to gene editing - much like ‘back alley ’abortions - may develop, where those who cannot afford gene editing will choose unauthorised and unregulated facilities with likely higher complication rates due to the lack of sanitation and doctors able to preform the procedure. Furthermore, if everyone decides to genetically edit themselves there would be a reduction in genetic variation in the human species. Further concern is that eradicating genetic diseases would result in overpopulation, thus greatly contributing to the ever worsening issues of global warming and depletion of essential natural resources. There is also a strong ethical issue associated with all types of gene editing – is it really correct for people to use the system to ‘customise’ their own children? Surely only the child should have the right to alter their appearance and should do it when they are old enough to understand the significance of this irreversible decision. Genetic editing may gives rise to eugenics in dictatorship countries - where political or government groups forcefully try to modify the gene pool of some of their subjects. This may be to ensure mental and physical advantage in warfare or scientific careers. In addition to ethical issues and the potential misuse of genome editing, there are concerns over safety and possible complications. Germline therapy (a type of genetic editing where DNA is transferred into the cells that produce reproductive cells) poses a potential infection risk through the use of viral vectors that enable DNA to be transferred into these cells. No one can truly predict how these resulting genes may interact during fertilisation and what genetic defects may arise. On the other hand, one can argue that genetic editing can easily be justified. After all, a long time ago surgery would have been considered as a human taking the opportunity to ‘play God’. Surgery was previously extremely risky due poor hygiene, little access to powerful anaesthetic and sub-optimal techniques with high complication rates. However, surgery is currently much safer- millions of people undergo it and change their lives for the better. Many people predict this future for gene editing – there is nothing wrong with people wanting to rid themselves of a disease to empower themselves and become healthy again- we all have the right to be as healthy as possible. Nature can be very cruel to us- people cannot choose whether they end up with genetically inherited diseases such as haemophilia which completely destroy one’s life and damage their mental health as well as their physical health. If research in genetic editing continues we will have the power to live long and happy lives. Couples can be reassured that their unborn children can too since germline therapy ensures the disease will not be inherited in the family again. If gene editing becomes widespread and advanced enough it will be the key to controlling human evolution – humans will eventually be much more intelligent creatures who are more mentally and physically resilient to the variety of challenges life brings in our day to day lives. In fact, instead of waiting hundreds of thousands of years for beneficial mutations to arise (as with natural selection), we could start to see beneficial changes every year. Many people regard gene therapy as unsafe, however, as with all new therapies, medicine, and vaccinations, genetic editing will be vigorously tested and researched before it is released to the public as a standard procedure, certifying its safety. In conclusion, genetic editing could greatly benefit people, increase longevity, and change the scale of human happiness and productivity by multiple orders of magnitude. It could eliminate thousands of diseases and many forms of pain and anxiety arising from them. There are only a handful of areas of research in the world with this much potential. However, whilst it may be a wonderful addition to medical science, there needs to be firm monitoring to ensure genetic editing is as risk free as possible. Furthermore, it must be strictly controlled to avoid misuse. Genetic editing has risks- we must proceed with caution, but many new technologies have risks and we are eventually able to use them to greatly benefit people throughout the world. We should not let fear hold back progress on this extremely promising new area of research. By Lana, 11N
|
Archives
March 2022
Categories
All
|